Say “Thank You, Public Health!”

Nov 20 2014 :: Published in General, Partners

Say "Thank You, Public Health!" | www.aphlblog.org
This year APHL is partnering with Research!America for Public Health Thank You Day! On Monday, November 24th, take the time to thank the many public health professionals who work hard to keep you, your family and your communities healthy. Even though they often work behind the scenes, public health professionals are there protecting you.

We simply cannot say “THANK YOU!” enough to our members, the unsung heroes in lab coats! So we are going to take to our many social networks and say #ThankYouPublicHealth! Add the hashtag on Facebook, Twitter, Pinterest, Instagram or any other network that uses hashtags. Complete the sentence…
Say "Thank You, Public Health!" | www.aphlblog.org

 

#ThankYouPublicHealth for stopping Ebola in its tracks!

#ThankYouPublicHealth for that tiny heel prick that saved my baby’s life! #newbornscreening

 

Or simply add it to a shared article or photo!

If you have space, add the official Public Health Thank You Day hashtag #PHTYD and #APHL. We’ll be watching for posts and will share our favorites! If you would are not active on any of these social networks, leave a comment below and we’ll share for you.

Most importantly, we just ask that you shout it from the virtual rooftops… #THANKYOUPUBLICHEALTH!

Check out Research!America’s website for more great Public Health Thank You Day resources.

 

 

 

 

 

 

 

No comments yet

Public Health and Freedom: Reflecting on Berlin, AIDS and Ebola

Nov 13 2014 :: Published in General

By Scott J. Becker, executive director, APHL

Twenty-five years ago I was huddled by a radio listening to the BBC broadcaster tell of the fall of the Berlin Wall. As I listened, I became more and more aware of how much Americans take our freedom for granted.

Earlier that same week I moved to Geneva, Switzerland to begin an assignment with the World Health Organization (WHO); not only was it a big move, it was also my first ever trip overseas. I was in a temporary apartment, didn’t speak the language (French), didn’t know anyone and, although very excited, was generally overwhelmed. Meanwhile, only a few hundred miles away, history was being made. I didn’t realize it at the time, but those first few weeks in Geneva helped shape my career and, really, the person I became from that point forward.

Public Health and Freedom: Reflecting on Berlin, AIDS and Ebola | www.aphlblog.org

My assignment at WHO was to coordinate a global conference on integrating HIV/ AIDS into the curriculum of health professional schools across the globe. While healthcare professionals weren’t scared like they were when the disease was first discovered, they really didn’t have much experience with HIV/ AIDS. So my project was to integrate this disease into curricula to teach a new generation of healthcare workers. It was an exciting and difficult challenge not only because of the heavy subject matter at hand or the language which was still unfamiliar to me, but also because I had to navigate the complex bureaucracy of WHO.

When I began this project, the public was just beginning to understand that HIV wasn’t a gay disease or an African disease, but it was a disease that could impact anyone. In fact, we were seeing heterosexual transmission explode in Africa. There was a huge stigma attached to AIDS causing those who were infected to be shunned in public and in the workplace.

As the international conference commenced in Istanbul, Turkey, I felt enormous pride that we were doing something, but it was short lived. One day a man who was HIV positive showed up at the meeting looking for care. Despite being unable to publicize the meeting because of the stigma, this man heard that all these health professionals were coming together in his city to discuss his disease. He was desperate and really had nowhere to turn in his community. He was an outcast and felt like he lost his freedom. The man cried when we told him that it wasn’t really a medical meeting and that we weren’t able to help him directly. My heart broke. I remember going back into the meeting and sharing his story with a colleague from the Turkish health ministry who took down his information and promised to reach out. (I’m fairly certain he did that to placate me, not for real follow up. I’ll never know for sure.)

By that point the Berlin Wall was fully down, people were passing back and forth between East and West Germany, and we were getting glimpses of hope for the future. Back in Geneva, I began to explore the connections between global public health and basic human freedoms. The fall of the wall and my experiences in Istanbul really solidified my desire to be part of improving health for all. It was abundantly clear that good health provided freedom in so many ways. I had found my niche.

I’ve thought a lot about the man in Istanbul recently as I’ve listened to stories about Ebola. Here, too, we have a new and very scary disease. Except that it’s not really new, but new to many in America. The stigma now being associated with Ebola is much like that of AIDS 25 or more years ago. The treatment of returning healthcare workers – heroes, in my mind – is shameful and disappointing. The lack of respect for information shared by scientific and medical experts, people who have studied Ebola for their entire career, is frustrating. And the worst of all, watching public fear escalate and place demands on decision makers is deeply troubling.

Healthcare workers in any region – whether those testing samples in New York City or those treating patients in Sierra Leone – deserve their freedom to move freely until medical experts determine they present a risk to the public. Patients who have recovered from Ebola deserve their freedom as they return to life in good health. And we all deserve freedom from fear, something that is given to me every time I speak with colleagues who understand the intricacies of how Ebola operates and how it can be contained.

My hope for the future is that we as public health professionals, healthcare workers, neighbors and as Americans can move beyond stigma to a better place, one where health is recognized as both a right and a freedom.

*Photo: World Health Organization’s headquarters in Geneva, Switzerland

 

One comment

Biomonitoring and the Public Health Laboratory: Everything You Want to Know

Oct 23 2014 :: Published in Environmental Health

Biomonitoring and the Public Health Laboratory: Everything You Want to Know | www.aphlblog.org

Simply stated, biomonitoring allows public health practitioners to understand whether environmental contaminants are being absorbed into people’s bodies. Given improvements in technology; the capabilities and expertise that now exist in public health laboratories; and the increasing public demand for more information about chemical exposures, biomonitoring is poised to become an integral component of public health practice.

APHL proudly recognizes all of the great work public health laboratories are doing to advance the practice of biomonitoring. We have made it a priority to share these biomonitoring achievements through a variety of channels.

Just in case you missed these great resources and stories, they are here:

Free Webinars

Blog posts and Lab Matters Articles

Fact Sheets

Other resources

Tell us what you think: EH@aphl.org.

 

2 comments

For Global Handwashing Day, the ABCs of Washing Your Hands

Oct 15 2014 :: Published in Infectious Diseases

Did you know that today, October 15, is Global Handwashing Day? It’s true! Even without a designated day, proper hand washing should always be a priority.

Why is hand washing so important?

  • It is estimated that washing hands with soap and water could reduce diarrheal disease-associated deaths by up to 50%. (CDC)
  • Researchers in London estimate that if everyone routinely washed their hands, a million deaths a year could be prevented. (CDC)
  • Handwashing can reduce the risk of respiratory infections by 16%. (CDC)
  • Handwashing with soap at critical times could help reduce school absenteeism by around 42 percent. (PPPHW)
  • When hand hygiene compliance in health facilities increases from less than 60% to 90%, there can be a 24% reduction in MRSA acquisition. (WHO)

What exactly is proper hand washing? It’s important to wet your hands with clean water and use soap. Rub your hands together and be sure to get every bit of your hand. Keep scrubbing for 20 seconds! We asked a few of APHL’s most special partners to demonstrate proper hand washing including a fun way to know you’ve been scrubbing for 20 seconds. Check out the video below and be sure to pass the message along!

 

ABCs of Good Handwashing from APHL on Vimeo.

 

No comments yet

FDA Proposes Oversight of Laboratory Developed Tests: Is This Good for Public Health?

Oct 09 2014 :: Published in Public Policy

By Celia Hagan, MPH, Senior Specialist, Public Policy, APHL

It finally happened.

After an extended silence and lack of significant action since their 2010 public meeting on the oversight of laboratory developed tests (LDTs), the Food and Drug Administration (FDA) released their long awaited draft regulatory framework for LDTs. While the official comment period was announced in the Federal Register on October 3, 2014, this isn’t the first time that we’ve seen the outlined framework.

FDA Proposes Oversight of Laboratory Developed Tests: Is This Good for Public Health? | www.aphlblog.org

Just this past July, FDA released a Notice to Congress indicating their intent to move forward with regulation. At the same time, they provided public access to the draft oversight framework. During the 60-day period between July and October, APHL has been hard at work analyzing and interpreting the framework to assess and understand the impact on public health laboratories.

The proposed framework will regulate LDTs in a risk based approach, similar to the way medical devices are currently regulated. Due to growing concerns about the lack of clinical validity, FDA is proposing premarket review requirements to establish these characteristics in LDTs and the establishment of a quality system to assure the finished device will be safe and effective. Laboratories that manufacture or utilize LDTs will be required to notify FDA of their LDT inventory six months after the date of the published final rule. This will allow FDA to classify LDTs into risk categories. The requirement to establish the test’s clinical validity through premarket review will depend on how LDTs fall into these risk categories. While every laboratory will be required to comply with notification and medical adverse reporting no matter what the risk, high risk and moderate risk LDTs will be subject to premarket review requirements. Low risk LDTs will be allowed enforcement discretion with respect to premarket review.  (FDA will classify LDTs into risk classes at a later date.)

FDA is also allowing some enforcement discretion with respect to premarket review for:

APHL strongly supports accurate and quality testing. Public health laboratories exist because they are nimble, prepared, responsive and adaptive; therefore, as FDA gathers feedback on its proposed LDT regulation, APHL will advocate for a framework which will not inhibit the critical services provided by public health laboratories. The innovation and evolution, not to mention the daily activities, of the public health laboratory system relies on an LDT regulatory framework that is not so burdensome that it unintentionally eliminates testing that provides important public health benefits. APHL has engaged FDA’s leadership to communicate the necessity of continuing the services provided by public health laboratories within any LDT regulatory framework. In addition, APHL has educated congressional staff on the critical role of public health laboratories within the public health system.

As the 120-day comment period comes to an end on February 2, 2015, APHL will submit a thoroughly considered and carefully crafted comment to ensure that services provided by public health laboratories continue to improve the public’s health. We encourage others who support public health to voice their interest in maintaining this valuable work.

FDA will host an informational webinar on October 23, 2014, at 2:00 pm EDT. More details can be found on FDA’s website. In addition to the submission of formal comments to regulations.gov, APHL will present at FDA’s public comment meeting in January 2015 (details to be announced at a later date). See you there!

 

No comments yet

Family Stories are the Best Way to Grasp the Value of Newborn Screening

Sep 18 2014 :: Published in Newborn Screening and Genetics

By Michelle M. Forman, senior media specialist, APHL

Family Stories are the Best Way to Grasp the Value of Newborn Screening | www.aphlblog.org

Did you know that September is National Newborn Screening Awareness Month? Even though this simple test is performed routinely on all babies born in the United States, it is still important to understand what it tests for and what to do if your baby has abnormal results. There is no better way to grasp the value of newborn screening than through the stories of families who have lived it.

I have gone through the newborn screening process twice, once with each of my children. The nurse came, whisked the baby away for a quick test and brought her/him back with a bandage on their heel. If I didn’t work in this field, I probably wouldn’t have asked. There was just too much going on during those days in the hospital. But I did ask – and I asked the pediatrician for their results. Fortunately, my children’s results were both normal.

Yes, newborn screening is looking for conditions that are extremely rare. Yes, the odds are that your baby does not have one of these hereditary conditions. But it is possible that they do and, if caught early by this amazing public health service, they can be treated and go on to live a healthy life.

After coming to know the families who shared their stories with me, seeing my baby taken to the nursery for that little heel prick was of immense comfort. Below is a list of all of the personal and family stories we have on our blog sorted by condition. They are stories of fear, stories of close-calls and many are stories of joy. Were it not for newborn screening, these families would have dramatically different lives than they do now. But instead, they are watching their children reach milestones, win awards, graduate and even start families of their own.

Thank you to the nurses, doctors, laboratorians and advocates working on newborn screening every day!

3-methylcrotonyl-CoA carboxylase deficiency (3-MCC)

Biotinidase Deficiency

Congenital Hypothyroidism

Critical Congenital Heart Disease (CCHD)

Cysitic Fibrosis

Galactosemia

Isovaleric Acidemia

Malonic Aciduria

Maple Syrup Urine Disease (MSUD)

Phenylketonuria (PKU)

Propionic Acidemia

Severe Combined Immunodeficiency (SCID)

Sickle Cell

No comments yet

Enterovirus D68 Testing, Surveillance and Prevention: What We’re Telling Our Friends

Sep 11 2014 :: Published in Infectious Diseases

By Laura Iwig, MPH, Senior Specialist, Infectious Disease Program, Stephanie Chester, MS, Influenza Program and Kelly Wroblewski, MPH, MT (ASCP), Infectious Disease Program, APHL

Fall brings the start of many things every year – school, of course, but also respiratory virus season. And this year as both kick-off we’re faced with an outbreak of a virus that is new to many, enterovirus D68 (EV-D68). Terrifying headlines have loaded up our Facebook newsfeeds, so we’re here to straighten things out a bit. When our friends and family ask us about EV-D68, this is what we tell them.

Enterovirus D68 Testing, Surveillance and Prevention: What We’re Telling Our Friends | www.aphlblog.org

First of all, there are many enteroviruses and D68 is just one type. What makes EV-D68 unique is that it is causing severe illness in some people, particularly children which is always cause for concern. Keep in mind that while there are severe cases being reported, there very likely are also less severe cases of EV-D68 with typical cold-like symptoms going unreported. The number of severe cases is not necessarily the full picture. Despite there being no vaccine or specific treatment for EV-D68, it typically resolves itself without any complications.

We know this all sounds kind of scary especially when news reports are focusing on the most severe cases. But it is important to understand that the clinical and public health communities are well-equipped to deal with enterovirus outbreaks and actually respond to similar outbreaks on a routine basis. We and our partners are prepared.

Clinical, commercial and public health laboratories are conducting testing to determine if severe cases and/or outbreaks are being caused by an enterovirus or closely related rhinovirus. (Not specifically D68 – we’ll get to that below.) Many of these labs utilize rapid molecular methods to detect a wide array of respiratory pathogens, including enteroviruses.

If testing confirms that you do have an enterovirus and if you have severe symptoms, CDC is conducting additional testing to determine which type of enterovirus you may have. For the public, the value in differentiating EV-D68 from other related viruses is to provide real-time information to your doctor to help recognize symptoms associated with severe cases, identify them and get them early supportive treatment. For example, if your child has an underlying condition such as asthma and comes down with a cold that starts to become severe, his doctor might want to be more proactive in supportive care if they have learned from public health officials that EV-D68 was detected in your community. Knowing that it is EV-D68 is in the community or even a specific school can impact public health infection control measures and raise awareness for patients and parents to be more proactive about intervention if their child does get sick.

There is also significant value to the scientific and public health communities in determining if enterovirus cases and outbreaks are caused by EV-D68. Historically, this particular type of enterovirus has been rarely reported so we are still learning how easily it transmits, who is at risk for severe illness and how widespread the virus may be. In fact, some scientists are wondering if EV-D68 is truly as rare as many think or if our testing capabilities have improved allowing us to detect more cases. Science is a never ending process of information gathering. While most actions won’t be any different from other respiratory outbreaks if even if epidemiological and laboratory surveillance activities detect EV-D68, these investigations may change how we deal with outbreaks like these in the future making us more prepared.

What can you do to protect yourself and your family?

  • Wash your hands frequently with soap and water! Alcohol based hand sanitizers do not work against enteroviruses.
  • Avoid close contact with those who are sick.
  • Clean and disinfect surfaces, especially those touched by those who are ill. The virus can be easily killed on surfaces.

For now, we are reassuring our friends and family that the clinical and public health communities are prepared and are responding to this outbreak. That gives us peace of mind and hopefully it will do the same for you.

 

No comments yet

In US, Massive Effort to Detect and Respond to Ebola Already Underway

By Tyler Wolford, MS, Specialist, Laboratory Response Network, APHL

Our curiosity and fears have been running wild since the 2014 Ebola* outbreak in West Africa hit headlines. Scenes from Outbreak, the 1995 box office hit that focused on a fictional outbreak of an Ebola-like virus in Zaire, begin running through our minds. We need to stray from these dramatizations and focus on the facts. Movies are supposed to build suspense and fear, but real life outbreaks don’t happen like they do in the movies. This isn’t Hollywood.

In US, Massive Effort to Detect and Respond to Ebola Already Underway | www.aphlblog.orgThe most common question on the minds of people around the United States: Are we fighting Ebola well enough to keep it from coming to my community?

The truth with many emerging infectious diseases including Ebola, is that the only way to fight it is to be prepared to respond. In the United States, we’re doing just that.

Although the Ebola-Zaire virus circulating in West Africa has not arrived in the United States, a massive effort is underway to detect and control any isolated cases of the disease should they occur in this country. The Centers for Disease Control and Prevention (CDC), the United States Department of Defense (DoD), pharmaceutical companies, public health laboratories and many more are all working domestically and abroad to minimize the potential threat. The DoD has long been studying Ebola virus and successfully developed a test to detect the Zaire strain. On August 5, 2014, the DoD Ebola detection test received emergency use authorization (EUA) by the Food and Drug Administration (FDA) to be used in this extreme circumstance. (An EUA expedites the FDA approval process for unapproved medical devices that could benefit response efforts when no adequate alternatives exist.) After the EUA was issued, CDC worked quickly to deploy the test to select public health laboratories across the United States. As the supply of test kits increases, CDC will look to expand the number of laboratories qualified to detect the Ebola-Zaire virus.

The public health laboratories receiving the Ebola detection assay are part of the Laboratory Response Network (LRN), a specialized network of laboratories that are capable of responding to biological, chemical, radiological and other emerging threats. This preparedness and response effort is not unique to Ebola. Most recently, the LRN has been leveraged to respond to emerging infectious diseases like Middle East Respiratory Syndrome – Coronavirus. The LRN provides a strong infrastructure of trained personnel, clear communication lines, and advanced technology to launch an effective response to emerging infectious disease.

The race to contain Ebola is on since the World Health Organization (WHO) declared the Ebola outbreak a Public Health Emergency of International Concern (PHEIC) in early August 2014. Moreover, the CDC has activated its Emergency Operations Center at the highest response level to help with the outbreak. As Dr. Tom Frieden, CDC director, said in a press conference this week, “We know how it spreads. We know how to stop it from spreading. The challenge is to do that everywhere that’s needed. In order to do that effectively, speed is key.”

While we all are concerned for the health and safety of the people in the most affected nations, we can find some comfort in knowing that a coordinated effort of qualified scientists, doctors, public health officials and organizations is underway to minimize the threat of outbreak in the US.

*Did you know there are five known strains of Ebola virus? The most dangerous one, Ebola-Zaire, is responsible for the outbreak in West Africa. The virus spreads person to person through direct contact with blood and other bodily fluids; despite what you may have read in fear-mongering articles, the spread of the virus through the air has never been documented. Once inside the host, the virus works by weakening the immune system and starving the host organs to the point of failure.

 

One comment

Vector-borne disease vs chemicals in bug spray: Weighing the risks

Aug 18 2014 :: Published in Environmental Health, Infectious Diseases

By Michelle M. Forman, senior media specialist, APHL

Vector-borne disease vs chemicals in bug spray: Weighing the risks | www.aphl.orgWith hot and humid weather comes news of diseases spread by mosquitos and ticks, while we also hear of concerns around the bug sprays we’re supposed to use to protect ourselves. What exactly are people supposed to do? Which pieces of information should you believe? How are you to decide the best way to protect yourself and our family from bites, disease AND harmful chemicals all at the same time? At this point, locking yourself inside until winter might seem like the only option.

Not to worry. The important thing is to consider whether the risks associated with each vector-borne disease are more or less worrisome than the risks associated with the chemicals found in bug sprays. Here is our breakdown of those risks.

While vector-borne diseases refer to illnesses transmitted by many tours of insects, we’re going to focus on mosquitoes and ticks here.

Note the severity of each vector-borne disease and impacts of applications described below may differ based on individual conditions such as age, predetermined health status, access to healthcare, etc. If you have any questions or concerns, please speak with your physician.

Mosquito-Borne Diseases

West Nile virus (WNV)WNV is found in all 48 contiguous states. The number of cases annually varies. 2012 was the deadliest year with 286 deaths.

  • The bad news: Those who show symptoms will typically have headache, body aches, joint pain, vomiting, diarrhea and/or rash within about a week of the infectious bite. In some cases, fatigue and weakness can last for months. In more severe cases, people can even develop neurologic conditions like encephalitis or meningitis. About 10% of those people will die. There are no medications or treatments for WNV aside from pain medication to reduce fever or relieve some of the symptoms. Those experiencing the most severe symptoms may be hospitalized.
  • The good news: Not every person bitten by an infected mosquito will show symptoms.

Eastern equine encephalitis virus (EEEV) – In the United States, an average of six human cases of EEE are reported annually. Cases mostly occur in the Atlantic and Gulf Coast states, although there have been some cases in the Great Lakes region as well.

  • The bad news:  EEE can be very serious. Severe cases will experience headache, high fever, chills and vomiting which could progress into disorientation, seizures, encephalitis and coma. Approximately one-third of patients who develop EEE die, and many of those who survive have mild to severe brain damage. Some of the long-term effects can cause death years later. There is no specific antiviral treatment for EEE; people showing symptoms should see their healthcare provider who can determine if supportive treatment is necessary and available.
  • The good news: Most cases will not show any symptoms, and only about 4-5% of EEEV cases become EEE.

Chikungunya – While there have only been four reported cases of locally acquired chikungunya in the US, experts are concerned because the disease spreads so rapidly. Chikungunya first reached the Caribbean in December 2013 and by March 2014 there were 15,000 reported cases.Chikungunya has now been identified in nearly 40 countries in Asia, Africa, Europe and, most recently, the Americas.

  • The bad news:  Nearly everyone who is bitten by an infected mosquito will develop fever and joint pain; other symptoms may also include headache, muscle pain, joint swelling or rash. The joint pain is often very debilitating, but usually lasts for a few days or possibly weeks. In some cases joint pain may continue for months or years. There have been some reports of lasting gastrointestinal, eye, neurological and heart complications. There is no treatment for chikungunya aside from over the counter pain medication to reduce discomfort.
  • The good news: Most people fully recover.

Dengue virus – According to CDC, there are over 100 million cases of dengue worldwide each year. It is a leading cause of death in many tropical areas of the world. While it is not typically found in the continental US, dengue is endemic in Puerto Rico and many parts of Latin America, Southeast Asia and the Pacific Islands where Americans vacation.

  • The bad news: Typical symptoms include high fever, severe headache, severe pain behind the eyes, joint pain, muscle and bone pain, rash, and mild bleeding (e.g., nose or gums bleed, easy bruising). Dengue hemorrhagic fever, a more severe form of dengue virus, is characterized by a fever that lasts from 2 to 7 days. It can be fatal if unrecognized and not properly treated in a timely manner.
  • The good news: Early detection and treatment will lower the rate of fatality to below 1%.

Tick-Borne Diseases

Lyme – According to CDC, Lyme disease is the most commonly reported vector-borne illness in the United States with over 20,000 cases annually. However it does not occur nationwide, but tends to be heavily concentrated in the northeast and upper Midwest.

  • The bad news: Bulls-eye rash occurs in 70-80% of infected people. Other symptoms include fatigue, chills, fever, headache, muscle and joint aches, and swollen lymph nodes. 10-20% of cases treated with antibiotics have muscle and joint pains, cognitive defects, sleep disturbance, or fatigue that lasts months or even years. In extremely rare cases (1% of cases), Lyme disease bacteria can enter the heart tissue causing Lyme carditis which can be fatal.
  • The good news: Patients can be treated with antibiotics and the prognosis is best when treatment begins early.

Rocky Mountain Spotted Fever – Spread through the bite of an infected tick, Rocky Mountain Spotted Fever occurs throughout the US.

  • The bad news: Symptoms typically begin with a sudden fever and headache, but many patients will eventually develop a rash, stomach pain, nausea, fatigue or muscle aches. (Not all cases develop every symptom.)  Severe cases can lead to life-long complications such as neurological problems and internal organ damage.  In extremely rare cases (less than 1% of cases), Rocky Mountain Spotted Fever can be fatal. Diagnosis can be difficult as the symptoms can resemble other conditions, and diagnostic tests looking for antibodies are often negative within the first 7-10 days. Treatment is most successful if started in the first five days.
  • The good news: While the number of cases has been higher than usual, the fatality rate is at an all-time low.

Bug Spray – These chemicals have been determined to be the most effective in preventing mosquito and tick bites:

DEET

  • The bad news: DEET has been linked to various health risks such as skin irritation, eye irritation and even neurological damage. But those cases are very rare, and many studies have found the connection between DEET and serious health risks to be inconclusive.
  • The good news: DEET is widely regarded as the most effective chemical in personal bug repellant. The stuff works! Better yet, using DEET with caution appears to significantly limit any serve risks; in fact, many now feel that DEET is safer than once believed. By using lower concentrations (10-30% for children), only using when it is necessary and following the instructions on the label the benefits of DEET far outweigh any risks.

Picaridin

  • The bad news: Picaridin has not been as effective for as long a period of time as DEET in some studies. It also does not protect against all species of mosquitoes. Picaridin is also a relative new kid on the block, so surveillance data is still lacking.
  • The good news: Picaridin is structurally made from the chemicals in pepper, so it is more natural than DEET. It is less likely to irritate skin, doesn’t have the same strong odor as DEET and seems to have a safer profile than DEET.

IR3535

  • The bad news: Concentrations of less than 10% were considered ineffective. IR3535 can be very irritating to the eyes, and has been shown to damage plastics.
  • The good news: IR3535 has been used in Europe for over 20 years. It has a safer profile than its competitors.

Oil of lemon eucalyptus and para-menthane-diol (PMD – synthetic concentration of lemon eucalyptus oil)

  • The bad news: Oil of lemon eucalyptus enhanced with PMD is not recommended for children under the age of 3. It can be irritating to the lungs and cause possible allergic reactions. Protection time seems to be less than DEET.
  • The good news: Higher concentrations seem to be as effective as 15-20% DEET. While lower concentrations will reduce the risk of allergic reaction and lung irritation, they are considerably less effective in repelling mosquitoes and ticks. For those insisting on a botanical bug spray, this is considered the best option.

So what’s the answer to our initial questions? Well, it isn’t really that easy. There is no one right answer for every person in every situation. Vector-borne diseases present a serious health risk that should be avoided. DEET is the most effective chemical for repelling insects available, and studies have shown that risk is low and effectiveness is still high when using concentrations under 30%. The other chemicals listed above may also be reasonable options for you and your family.

Our recommendation: The benefits associated with the chemicals far outweigh the risks. Wearing long pants and sleeves, wearing a hat and eliminating standing water will also help decrease the risk of mosquitoes and ticks. But the best way to avoid vector-borne diseases is to use bug spray when you are in an area with a high number of mosquitoes and ticks.

No comments yet

Arsenic in the water: Are filters and bottled water enough protection?

Aug 05 2014 :: Published in Environmental Health

By Melissa Murray Jordan, senior environmental epidemiologist, Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health

Arsenic in the water: Are filters and bottled water enough protection? | www.aphlblog.org

Private wells in many central Florida counties have been found to contain levels of arsenic above the federal maximum containment level (MCL) of 10 μg/L (micrograms per liter). Knowing it is present is important to the public’s health; but how serious is this? Even exposure to low amounts of arsenic can potentially lead to an abnormal heart rhythm, damage to blood vessels, and a tingling sensation in hands and feet. Inorganic arsenic, the type in this water, is a carcinogen when consumed over many years. High levels of exposure to arsenic may lead to death. To address this known contamination, the Florida Safe Water Restoration Program provided filters or bottled water to households with arsenic levels in private wells between 10 μg/L and 50 μg/L. In partnership with the Florida Department of Environmental Protection, the Florida Department of Health (FDOH) decided to test the effectiveness of this program as well as explore any further impact of the contaminated water on residents living in areas of concern.

The study targeted Hernando County where nearly 400 of the 1,200 wells tested had elevated arsenic levels. This time, scientists wanted to understand if residents who weren’t drinking unfiltered well water (people who were drinking bottled water or using a filter in their homes) were still ingesting unsafe levels of arsenic through other unfiltered tap water in the home. It is widely known that arsenic exposure often occurs from drinking water, but what about exposure to water in other ways? What about brushing your teeth with unfiltered water? Or when cooking with unfiltered water?

A critical initial step of this project was forming a workgroup with representatives from many disciplines to inform various steps of the study:

  • Environmental specialists to provide background information on areas of known arsenic contamination in the state and details on the private well testing database;
  • Epidemiologists to provide guidance on the study design and sample size;
  • Laboratorians for developing the protocol for collecting, shipping and testing the water and urine samples;
  • Toxicologists to interpret the risk of arsenic exposure;
  • And communications experts to develop press releases, frequently asked questions and coordinate media.

Funding from CDC’s Environmental Public Health Tracking program allowed the state to engage these experts and ensured a high-quality study.

From April through July of 2013, 360 individuals from 166 households participated in the study. Nearly 50% of the participants were from control households: households with well water arsenic levels below 8 μg/L (below MCL). The other half were classified as case households: households with arsenic levels exceeding 10 μg/L (at or above the MCL). Participants provided urine and water samples, and completed a questionnaire on water consumption, dietary history and other possible sources of arsenic exposures. Water and urine samples were sent to the public health laboratory in Jacksonville, Florida for analysis of total arsenic.

The majority of case households (59.8%) reported bottled water as their most common source of drinking water, and 47.5% reported using bottled water for cooking. However, the majority of case households reported using unfiltered well water to brush their teeth (88.7%).

In many biomonitoring studies, only adults participate. This study also included children. Simply because of their size, a small amount of a chemical can have a larger impact in a child than the same amount in an adult. Scientists felt it was valuable to look at a range of people without omitting the smallest members of the community. Additionally, children tend to have different behaviors from the adults in their homes. For example, they may take baths rather than showers – and kids may be more likely to ingest that bath water. Fortunately, no children in this study were found to have elevated levels of inorganic arsenic.

Results: Residents using filtered or bottled water for drinking were not at an increased risk for arsenic exposure through other unfiltered household water sources.

The distribution of filters and bottled water was helping to prevent residents from exposure to arsenic. While testing for contaminants in the wells was an important first step to understanding the problem, biomonitoring provided a more complete picture of the full impact on a population. This was obviously good news to the residents and researchers alike.

No comments yet

Older posts »